
Beyond Mocks: Modernizing 
Integration Testing with 

TestContainers

Mohammed Aboullaite
@laytoun
Sr Backend Engineer, Spotify
Docker Captain
Java Champion
Google Developer Expert



Agenda
● The Integration Testing Challenge
● Introduction to Testcontainers
● Advanced Patterns
● CI/CD Integration
● Testcontainers Cloud
● Best Practices & Pitfalls
● Q&A



The Integration Testing 
Challenge

● Microservices architecture 
complexity

● Multiple external dependencies
● Production-like environments 

are difficult to replicate
● Mocks only go so far



Where Mocks Fall Short



Introduction to Testcontainers
● Java library that enables using Docker containers in 

integration tests
● Spins up real dependency services during test execution
● Supported languages: Java, Go, .NET, Node.js, Python, and 

more
● Works with JUnit 4, JUnit 5, TestNG, Spock



Core Concepts
● Generic Containers
● Database Containers
● Docker Compose Support
● Singleton Containers
● Container Lifecycle Management



Key Benefits
● Tests against real services, not simulations
● Consistent environment across development and CI
● Isolated testing (no shared test databases)
● Fast startup with reusable containers
● Reduced maintenance of test environments



Demo
https://github.com/aboullaite/testcontainers-demo



Custom Containers



Container Reuse



Service Discovery



CI/CD Integration - GitHub Actions



CI/CD Integration - Performance 
Considerations
● Container reuse strategies
● Parallelization approaches
● Resource limitations
● Caching Docker images
● Remote Docker hosts option



Introducing Testcontainers Cloud

● Docker's managed Testcontainers service
● Zero local Docker dependencies
● Runs containers in the cloud
● Seamless integration with existing tests
● Launched in 2023, now part of Docker



Testcontainers Cloud - How It Works



Testcontainers Cloud - Benefits

● No Docker installation required
● Consistent environment across all developers
● Reduced resource usage on developer machines
● Faster test execution (pre-warmed containers)
● Parallel test execution without resource constraints
● Usage insights and metrics



Best Practices

● Start containers only when needed
● Clean up all resources after tests
● Use the latest Testcontainers version
● Maintain container image versions
● Consider resource usage (CPU/memory)
● Implement wait strategies



Test Data Management

● Init scripts and migrations
● Volume mounts for test fixtures
● Programmatic data setup
● Snapshot testing approaches
● Reset strategies between tests



Common Pitfalls

● Resource leaks (containers not stopped)
● Insufficient wait strategies
● Hardcoded ports
● Ignoring container logs
● Overly complex container setups
● Using production credentials



Beyond Java - Polyglot Support

Testcontainers modules for:

● Go
● .NET
● Node.js
● Python
● Rust
● And more...



Resources

● Official documentation: https://testcontainers.com
● GitHub: https://github.com/testcontainers
● Testcontainers Cloud: https://testcontainers.cloud
● Sample code from this talk: 

https://github.com/aboullaite/testcontainers-demo



Thanks!
Do you have any questions?

@laytoun


